January 05, 2013

LaTeX latviski un mūsdienīgi


The only way to learn is to suffer.
/prof. A Aharony, my PhD advisor/

Kopš es pirmo reizi saskaros ar LaTeX latviskošanu, rakstot bakalaura darbu Latvijas Universitātē (1996. gads), šī apbrīnojami stabila tehnoloģija ir spērusi dažus būtiskus soļus uz priekšu. Svarīgākais, kas pa šo laiku noticis datorpasaulē ar latviešu (un neskaitāmām citām!) valodām ir Unicode. Galvassāpes par dažādiem kodējumiem (encodings) nu lēnām pazūd kā ļaunais murgs, un pasauli pārņem utf-8.  Diemžēl, jo tālāk pagātnē ir studenta gadi, jo mazāk ir laika iedziļināties tehnoloģiju attīstībā. Un pat ja es ar sāpēm raugos, kā nākamā paaudze pārņem aizvēsturiskus latviskošanas trikus, līdz pagājušā gada nogalei man nebija laika un iegansta iedziļināties un vienreiz sarakstīt latvisku LaTeX dokumentu "kā nākas". Par to tad arī šis bloga ieraksts.

Vispirms dažos teikumos par to, kas ir LaTeX. Tā ir kompleksu tekstu sagatavošanas sistēma, kas nodrošina tipogrāfisku ekselenci "automātiski", ļaujot nedomāt par fontiem, atstarpēm un atsaucēm, bet veltīt sevi saturam. Ļoti noderīga diplomdarbiem, disertācijām, atskaitēm ar prāvu literatūras sarakstu, gariem vienādojumiem vai daudzveidīgām valodām. Protams, bauda no braukšanas nāk tikai tam, kas labi iejuties šofera krēslā, tādēļ jo sevišķi noderīgi ir padomi iesācējiem, kas palīdz "nekāpt uz grābekļiem" un pārvarēt apjukumu instalējot, uzskaņojot un uzsākot pareizi lietot tādu jaudīgu ieroci, kāds ir LaTeX.

Par laimi, pat latviski ir pieejamas labas pamācības, kā instalēt un uzsākt lietot LaTeX (patiecoties Jānim Valeinim un Kristapam  Bergfeldam), nemaz neminot globālo telpu un profesionāļu kopienu. Diemžēl, populārākais latviskošanas paņēmiens no 1996. gada - ar manuālām garumzīmēm ("ā" vietā rakstot "\={a}") - ir strupceļš, kas atņem virkni modernā LaTeX priekšrocību un padara daudz grūtāku teksta tālāko lietošanu ārpus LaTeX. Arņa Votikāna instrukcijas ir būtisks solis gaišās nākotnes virzienā, es piedāvāju vēl dažus solīšus.

Tātad, trīs lietas, ko apguvu gadu mijā un sirsnīgi iesaku LaTeX iesācējiem un lietpratējiem:
  1. XeLaTeX ar polyglossia valodu atbalstam un fontspec OpenType fontu izvēlei.
  2. KOMA-script kā pamats dokumenta stilam article vai report vietā.
  3. biblatex literatūras sarakstam(-iem) kā Bibtex pēctecis. (Ar Mendeley palīdzību var grābt metadatus no avotu mājaslapām un pat pdf failiem.)
Nedaudz sīkāk par katru no punktiem. Uzsākt ir ļoti vienkārši. Instalējot moderno MikTeX 2.9 vai TeX Live 2011 (de facto standarti attiecīgi Windows un Linux vidē), latviešu valoda strādā "out-of-the-box"! Nekāds konfigurēšanas, pakotņu pieinstalēšanas, vai "formātu failu atjaunošanas". Ir tikai jālieto Unicode-savietojams teksta redaktors (TeXnic center, TeXworks, jEdit, da jebkurš ne-antīks teksta redaktors, pat notepad!).

Šis ir "hello world" piemērs:
Rezultāts pdf failā izskatās sekojoši:
Par vienu "grābekli" gan gribu brīdināt: neskaidru iemeslu dēļ satura rādītājs ar KOMA-script un latviešu valodu negāja kopā, kamēr pārkopēju polyglossia failu ar latviešu valodas definīcijām "gloss-latvian.ldf" no MikTeX dziļumiem uz mana dokumenta folderi.

Protams, mums nav jāapstājas pie noklusējuma fonta un stila. Šeit ir plašāks paraugs ar paskaidrojošajiem komentāriem. "Nokompilētā" veidā šis piemērs, cerams, dod priekšstatu par LaTeX ideju un garu. Ievērojiet arī, ka OpenType fontu pieslēgšana piešķir garumzīmēm īsto garumu un novietojumu:
Tiem, ka ir tikuši tik tālu un vēlas (varbūt, ir spiesti) lietot Unicode-laikmeta LaTeX, novēlu pacietību un veiksmi! Ja ir ar ko padalīties, pastāstiet par savām veiksmēm vai neveiksmēm ar LaTeX. Nākamais solis būtu pārstrādāt Jāņa Valeiņa dimplomdarba stila failu "ludis", kas ir populārs fizmatu vidū.

Papildinājums: Andreja Vihrova 2011. gada pakotne "fixlatvian" ir lielisks atradums, kas pēc būtības līdz galam atrisina LaTeX latviskošanas jautājumu. Manā testā konflikti ar KOMA-script neradās. Nomainot garākā piemērā 2. un 3.rindiņu uz "\usepackage{fixlatvian}", bet 36. rindiņā - \ref uz \nref, rezultāts kļūst vēl tīkamāks. 

January 03, 2013

Kvantu skaitīkļi un 2012. gada Nobeļa prēmija fizikā


Ceļš uz fundamentālās zinātnes “lielajiem mērķiem” - piemēram, Higsa bozonu vai kvantu datoriem - ir ceļojums nezināmajā, kas paver jaunus apvāršņus un negaidītus pielietojumus. Šis stāsts ir par dažiem atklājumiem ceļā uz kvantu datoru izveidi, kuri ļoti praktiskā veidā stiprinājuši augsto tehnoloģiju un ražošanas pašus pamatus - metroloģijas zinātni. Ar šo jomu ir cieši saistīta nupat piešķirtā Nobeļa prēmija fizikā, bet savukārt vienā no šī ceļa takām - “kvantu skaitīkļu” izveide no nanotranzistoriem - ir arī Latvijas fiziķu pēdas.

Metroloģija no senatnes līdz mūsdienām

Metroloģija ir zinātne par precīzu mērīšanu un mērvienībām. Tā ir tikpat sena kā pati civilizācija - jo civilizācija nav iespējama bez tirdzniecības, bet tirgotājam jāzin, cik daudz viņš pērk vai pārdod. Vissenākais un vistiešākais veids, kā vienoties par mēriem, ir izvēlēties mērvienību paraugus jeb etalonus. Piemēram, Londonā Trafalgāras laukumā ir atrodami 1876. gadā bronzā iekaltas pēdas un jarda etalonu kopijas.

Vienkāršākie mērvienību etaloni ir saistīti ar konkrētu, unikālu priekšmetu, kura īpašība (piemēram, masa) definē mērvienību. Savukārt 20. gadsimta revolūcijas fizikā - kvantu un relativitātes teorijas - pavēra ceļu uz etaloniem, kas balstās universālajos fizikas likumos un ir realizējami neatkarīgi no konkrētiem priekšmetiem-etaloniem. Attīstoties 21. gadsimta zinātnei un tehnoloģijām, nemitīgi pieaug prasības mērīšanas un etalonu precizitātei, un mūsdienu metroloģija iet kopsolī ar fundamentālo fiziku. Abas strādā uz tehnoloģisko iespēju robežas, kāpjot tai pāri un radot vēl nebijušas iespējas.

Kvantu izaicinājums un 2012. gada Nobeļa prēmija

Mūsdienu metroloģijas ciešo saikni ar fundamentālo fiziku lieliski apliecina 2012. gada Nobeļa prēmija fizikā Seržam Harošam (Serge Haroche) un Dāvidam Vainlandam (David Wineland).  Vainlands strādā ASV Nacionālajā metroloģijas institūtā (National Institute of Standards and Technology, NIST). Abu laureātu darbs ir saistīts ar fizikas fundamentālāko un mūsdienās visprecīzāk izmērāmo lielumu – laiku.

Lai mērītu laiku, ir vajadzīgs pulkstenis – fizikāla iekārta. Bet pulksteņa „sirds” (tiešā nozīmē!) ir svārsts, jeb, kā fiziķi to sauc svešvārdā, oscilators. Mūsdienu visprecīzākos pulksteņus sauc par atompulksteņiem  jo to „sirds” ir elektronu svārstības atomos vai jonos. (Jons ir atoms, kam trūkst vai ir par daudz elektronu, tas ir elektriski lādēts un līdz ar to viegli noturams vakuumā ar elektrisko lauku).

To, kā svārstās elektroni atomā, apraksta nu jau teju 100 gadu vecā fizikas teorija – kvantu mehānika. Tā ir radusies tieši no fiziķu centieniem saprast, kā ir uzbūvēts atoms. Bet šo atompasaules neparasto likumu saistība ar ikdienas (kā fiziķi saka – klasisko) pasauli nekad nav bijusi līdz galam skaidra. Līdz nesenam laikam tā bija izpētāma tikai „domu eksperimentos”. Šo situāciju ir palīdzējuši mainīt šī gada Nobeļa prēmijas laureāti. Viņi ir attīstījuši tehnoloģijas, ka ļauj vakuumā satvert un kontrolēti ietekmēt atsevišķus jonus un gaismas daļiņas, atsedzot to kvantu īpašības. Ieguvēja ir ne tikai kvantu fizika, bet arī metroloģija: Vainlanda komanda ir radījusi “jonu pulksteni”, kura sirds “pukst” simtiem reižu ātrāk un precīzāk, nekā pašreizējam sekundes etalonam, cēzija atompulkstenim.

Kvantu skaitīkļi un strāvas etalons

Nanoelektronikas pētījumu Latvijas universitātē lielais mērķis ir realizēt šīs pašas „..metodes, kas ļauj mērīt un manipulēt ar atsevišķajiem kvantu sistēmām” (citāts no Nobeļa komitejas paziņojuma 2012. gada 9. oktobrī). Atšķirībā ir tikai tajā, ka atomu un vakuuma kameru vietā mēs pētām atsevišķos elektronus nanotranzistoros (t.s. kvantu punktus). Mēs strādājam no teorijas puses, savukārt eksperimenti ar atsevišķu elektronu manipulēšanu tiek veikti Eiropas lielvalstu -- Vācijas un Lielbritānijas -- nacionālajos metroloģijas institūtos. Vācijā tas ir Fizikas un tehnikas federālais institūts Braunšveigas pilsētā (Physikalisch-Technische Bundesanstalt, PTB).

Tuvākais šo kvantu tehnoloģiju pielietojums ir saistīts ar elektronikas pamatlielumu – strāvu un tās mērvienību ampēru.Strāva ir noteikts lādiņa daudzums laika vienībā. Pateicoties kvantu mehānikai, laiku un frekvenci mēs protam mērīt precīzāk par visiem citiem lielumiem. Ja vien mēs prastu skaitīt elektronus tik pat droši un nekļūdīgi kā, piemēram, domino kauliņus, tad strāvu varētu mērīt, vienkārši saskaitot elementārlādiņu (elektronus) skaitu vienā sekundē.

Mēs strādājam pie tā saucamo kvantu sūkņu teorijas, kas cenšas noskaidrot fundamentālās robežas, ar kurām precīzo skaitīšanu ierobežo kvantu fizikas pamatlikumi. Šī sapratne attīstās soli pa solim – vienu soli teorija, otru eksperiments utt. –  ejot uz priekšu nezināmajā. Šogad kopā ar LU studentiem esam spēruši vēl vienu soli uz priekšu kvantu sūkņu teorijā: novembra beigās ASV prestižākajā fizikas žurnālā (Physical Review Letters) ir publicēts mūsu raksts par to, kā atsegt kvantu punktā ieslazdotā elektrona viļņu īpašības. Izrādās, ka tieši tas, ka elektrons ir kvantu daļiņa un līdz ar to uzvedas arī kā vilnis, ir minētais fundamentālais šķērslis jaunā strāvas etalona izveidei. Mums izdevies izstrādāt metodi, kā radīt tik precīzu kvantu sūkni, cik vien pieļauj Heizenberga nenoteiktības princips (kas ir viens no kvantu fizikas stūrakmeņiem).

Skats nākotnē

Praktiskie sasniegumi motivē tālākus fundamentālos pētījumus. Kvantu nanoelektronikas nākotne ir spoža: cīņā par labāko iespējamo precizitāti ir apzināti veidi, kā kvantu punktu pārvērst no “elektronu trauciņa” par kvantu informācijas glabātuvi. Jaunais lietišķais virziens ir lādiņu skaitītāju izmantošana ļoti jūtīgiem mērījumiem, kas pietuvojas kvantu nenoteiktības diktētajai robežai. Un ja ņemam vēsturi par paraugu, var droši apgalvot, ka nākotnē fizikas un metroloģijas draudzība sagādās vēl nevienu vien noderīgu un pārsteidzošu atklājumu.

Šajā rakstā minētie Latvijas zinātnieku sasniegumi ir tikai daļa no starpdisciplināra pētījumu projekta „Datorzinātnes pielietojumi un tās saiknes arkvantu fiziku” rezultātiem. Projekts tika īstenots Latvijas Universitātes Datorikas fakultātē no 2009. gada 1. decembra līdz 2012.gada 30. novembrim Eiropas struktūrfondu programmas 2007.-2013.gadam „Cilvēkresursi un nodarbinātība” aktivitātas „Cilvēkresursu piesaiste zinātnei” ietvaros. Projekta kopējās izmaksas ir 1 242 000 lati, no kurām 85% ir Eiropas Sociālā fonda līdzfinansējums.